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The aim of the proposal was to determine the nitrogen to carbon abundance

ratios from transition layer lines in stars with different T_6and
luminosities.

The surface emission line fluxes F are given by

F =_ (T, line) • Em(T).Ab(element)

where _ gives the collisional excitation rate for the line under

investigation for the temperature at which the line is predominantly formed.

Ab(element) '._ the abundance of the element under investigation and

2

Em(T) = ne dh is the emission measure, with n e = the electron density

and the heights h I and h_ bracket the height range at which the line is
predominantly formed. When F is measured and _(T, line) is known from theory

or experiment the product Em(T).Ab(element) can be determined. For stars with

known element abundances the Em(T) can be determined for different

temperatures from lines formed at different temperatures. For main sequence

and luminosity class IV stars with supposedly solar element abundances it was
found that the dependence of the emission measures on temperature follows a

power law for the temperature range 30,000K < T < 150,000K. We determine the

exponent of the power law for each star from the ratio of the CII to CIV

emission measures which is independent of the element abundance. These lines

originate at very different temperatures (30,000K and 100,000K). With the

known exponent in the power law we can extrapolate the emission measures to

T=I50,000K, the ten_Derature at which the NV lines are formed. For stars for

which we do not know the abundance of carbon the carbon lines only give us the

product of Em(T),Ab(carbon) which we extrapolate to 150,000K.

The mwasured ratio of the NV to CIV emission line fluxes is given by

F (NV) -- (NV) Em (NV) AB (N)
F(CIV) (CIV) Em(CIV) Ab (C)

from which the abundance ratio N/C can be determined. (The unknown factor of

the carbon abundance is attached to both the Em(CIV) and the extrapolated

Em(NV) and therefore cancels.) We previously reported our results for giants.

Some colleagues have expressed concerns whether the power law extrapolation

of the emission measures to T=I50,000K is justified for the giants studied by

us. We have checked this again for several FV and FIV stars with solar

abundances and the fit is quite good. As a further check we have compared our
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abundance results with those of photospheric abundance studies for stars in

common with the photospheric investigations. The results are shown in Figure

i, which, I think shows that our analyses are at least as accurate as the

photospheric determinations. Our studies can be extended to F and early G

stars for which photospheric abundance determinations for giants are hard to

do because molecular bands become too weak. We estimate the upper limit for

our errors to be 0.27 dex, which could occur only if all the errors conspire

to work in the same direction which is rather unlikely. We have submitted the

abundance results for publication in the Ap.J. I enclose a copy of the

manuscript.

We have then looked at the abundance determination in the context of

stellar evolution. As already shown in the last report the N/C abundance ratio

increases steeply at the point of evolution for which the convection zone

reachest deepest. Looking at the evolution of the rotation velocities v sin i

we also find a steep decrease in v sin i at this point, which makes it rather

likely that the decrease in v sin i is related to the increasing depth of

the convection zone.

The evolutionary timescales for the giants are rather short. Rutten and

Pylyser (1988) estimate by comparison with main sequence stars that these

timescales are too short for magnetic braking due to stellar winds to cause the

decrease in v sin i during such a small interval of T_6 . This leaves two

possibilities: Either the deep convection zone leads to much larger magnetic

activity than for main sequence stars thereby leading to enhanced fast braking

or the surface angular momentum is reduced due to rearrangement of angular

momentum within the star caused by the deep convection. If the star started

out rotating nearly as a rigid body and convection brings deep material to the

surface as indicated by the increased N/C abundance ratio, it brings at the

same time lower angular momentum material to the surface. The surface v sin i

is then expected to decrease as already pointed out by Endal and Sofia. For

rotation with nearly depth independent angular momentum in the deep convection

zone Endal and Gray (1982) calculate a surface v sin i as indicated by the

squares shown in Figure 2 ,assuming an original v sin i = 140 km/sec, as

observed in the average for the main sequence progenitors. This point fits the

observations rather well.

On the other hand if increased magnetic activity due to deep convection is

responsible for the fast braking we may expect to see increased transition

layer activity and increased coronal temperatures leading to stronger stellar

winds. We have checked this. No increased transition layer emission is seen at

the point where v sin i decreases and no increased X-ray emission is seen

either. We conclude that the decrease in v sin i for Te_5800 K is most

probably due to the rearrangement of angular momentum in-the stars due to deep

convective mixing. It appears that the convection zone is rotating with nearly

depth independent angular momentum.

If the angular momentum of the star does not change at this point, yet a

steep decrease in magnetic activity is seen as observed in the CIV lines, then

this shows that the dynamo responsible for the transition layer activity is

seated mainly in the surface layers of the star which has the low v sin i. The

high v sin i value in the deeper layers has apparently no influence. The same

holds for the magnetic field responsible for the coronal X-ray emission.

We have written up these discussions in a paper submitted to the A.J. for

publication. A copy is enclosed.

we have now extended the abundance studies to luminosity class IV stars.

For these stars the transition layer emission is generally weaker. The

measuring uncertainties therefore become larger. The general trend for the N/C

abundance ratios still agrees with expectations from stellar evolution theory.

We find an average increase in the N/C abundance ratio at the point of deepest

convection. Since these stars are generally older than the giants they have

lost already some angular momentum while on the main sequence. The decrease in

v sin i at the evolutionary state with rapidly deepening convection still

seems to be there but is less well pronounced. Evolutionary timescales along



the subgiant branch are somewhat longer thereby permitting the magnetic

braking to be mere effective. On the other hand the activity for these stars

is generally lower than for the giants. Rutten and Pylyser argue that because
of this the magnetic braking also does not explain the decrease in v sin i for

the subgiants. For the subgiants we are still in the process of analysing the
relation between the different observational data and the interpretation in

terms of stellar evolution.

We are also in the process of determining the N/C abundance ratios for

main sequence stars for which the emission line fluxes are still smaller and

very few well exposed spectra are available. The NV lines are very difficult

to measure. For some FIV and FV stars very broad and complex features are seen

in the 1240 A spectral region, which we have not yet been able to interprete.

The N/C abundance ratios found for the cooler main sequence stars show a large

scatter due to the measuring uncertainty. For the best spectra the average
values seem to be the same for all spectral types as is to be expected, though

the average N/C ratio appears to be higher by 0.1 dex than for the giants.

This effect is more pronounced for the poorer spectra with hard to measure NV

lines. We therefore suspect that for weak lines we tend to measure

systematically somewhat too large emission line fluxes possibly interpreting a

noise peak as a line. We are still in the process of studying this problem.
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Figure /. The photospheric excess abundance ratios, as compared to solar abundance

ratios of nitrogen to carbon, obtained by other authors, are compared with the ones found

here from the transition layer lines. The limits of error for both our study and the

traditional approach of the other studies are shown in the lower right comer. The diagonal

solid line would be obtained for perfect agreement. All stars are giants except the open

circles which are supergiants from the Luck and Lambert (1985) paper.



Figure Caption

Figure Za. The dependence of the C IV (1550 A) emission line surface fluxes on tile effective

temperature is shown for giants. Dots indicate known spectroscopic binaries, v indicate

variable radial velocities and question marks possible variable radial velocities for the

stars. RS indicates RS CVn stars, p stars with peculiar CN and/or CII molecular band

strengths. Brackets signal uncertain measurements, and arrows show that the values

given are upper limits.

Figure 2b. The measured rotational velocities v sin i are shown as a function of T_g or B-V.

'l'_[r scale is tile same as in Figures la and lc. Notation as in Figure la. Notice that

/,he peculiar CN and CI! molecular band strength arc observed only after the stars have

decreased their v silt i.

Tile dashed line indicates the expected decrease in v sin i due to expansion if each mass

clement were to conserve its angular momentum (see text).

The values calculated by Gray and Endal (1982) for v0 sin i = 140 kms -1 and for depth

independent specific angular momcntuln in the convection zones are given as squares.

Figure 2c. The logarithm of the CIV to CII line flux ratio RcIV = log F(ClV) is shown
F(Cll)

as a function of log Teff. Notation is the same as in Figure la. The ratio decreases for

slowly rotating stars, probably showing a smaller contribution of MIlD wave heating. 7

Tau was omitted from the plot because of the large variations in RcIv.
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Abstract

We explore the possibility to determine relative carbon, nitrogen and silicon abundances

from the emission line fluxes in the lower transition layers (3. 104K < T < 1.5. 105K)

between stellar chromospheres and coronae. The surface fluxes of the transition layer

emission lines are proportional to the emission measures Em and the element abundances

A(el). Observations for main sequence and luminosity class IV stars with presumably solar

element abundances shove that for the lower transition layers i.e., for T < 1.5. 105K,

Em = BT -'I. This is also expected from theoretical considerations. We assume that this

relation also holds for s stars with nonsolar element abundance ratios. For a given carbon

abundance the constants 7 and B in this relation can then be determined from the CII

and C IV emission line fluxes. The emission measures are thus known for all temperatures

between 3 • 104 and 1.5 • 10SK. From the N V and Si IV lines we can thereby determine the

abundances of these elements relative to carbon from their surface emission line fluxes.

Ratios of N/C abundances determined in this way for some giants and supergiants agree

within the limits of errors with those determined by Luck, Luck and Lambert, and Lambert

and Ries from molecular bands. For giants we find an increase in the ratio of N/C at B-V

--, 0.8 as expected theoretically. \\re also find some apparent changes in the silicon to carbon

abundance ratios.

Subject headings: stars: abundances - stars: emission-line - stars: late-type.
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I. Introduction and Background

In 1978, 1981, and 1985, Luck and Luck and Lambert found in the atmospheres

of supergiants and of Cepheids large N/C ratios coupled with increased CI3/C 12 ratios

indicative of CNO cycle processed material being mixed up to the surface of these stars.

These peculiar C and N abundances drew the attention of Becker and Cox in 1982. They

studied whether such an enrichment in the nitrogen abundances in supergiants would be

expected in the course of standard stellar evolution theory. They found that while mixing due

to deep surface convection during the red giant phase dredges up some CNO cycle products

the expected increase in the N/C ratio is smaller than the observed one. They' found that the

observed large increase in the N abundance could only be obtained theoretically' if additional

mixing above the boundaries of the convective core would occur in the progenitors of the

supergiants and Cepheids during their main sequence phases. The material being mixed out

from the core can then later be dredged up by deep surface convection during the red giant

phase.

In 1981 Lambert and Ries also found larger than solar N/C ratios in giants. These

findings were confirmed by Brown (1987). See also Luck (1991). These authors found an

increase in N/C for B - V > 0.6.5. While the convection zone extends smoothly into deeper

and deeper layers noticeable amounts of CNO cycle processed material can be dredged up

only from very deep layers, close to the hydrogen burning shell source, which are reached by

the convection only for Tett _< 5500 K. Lambert and Ries, Brown and Luck also find larger

increases in the N/C abundance ratios than would be expected theoretically,.

Sneden, Pilachowski and VandenBerg (1986) studied the 12C/laC ratio and find

indication for additional mixing during the main sequence phase also for population II giants,

which ineans for stellar masses < 1 M_.

If additional mixing during the main sequence stage of massive stars actually takes place,

it has very important consequences for stellar evolution theory. As was first pointed out by
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Beckerand Cox in 1982,and later also calculatedby Bertelli, Bressan,Chiosi and Angerer

(1986)suchmixing leadsto a wideningof the uppermain sequenceascomparedto standard

evolution theory. It also leadsto an increaseof the main sequencelifetimes as compared

to standard evolution theory. In addition it leadsto an increasein luminosity for the giant

phasefor a star of a givenmassand it especiallyleadsto an increaseof the luminosities of

the Cepheidsof a given mass. The evolutionary massesof Cepheidsare thereby decreased

and could then be in good agreementwith the pulsationalmassesobtained for the distance

scaledeterminedby Schmidt (1984).

Luck and Lambert and Sneden et al. determined the C and N abundances from

photospheric spectral analysis especially of molecular bands, which requires spectrum

synthesis. An accurate knowledge of the temperature stratification is required as well as

the knowledge of the oxygen abundance which is difficult to determine. LTE is always

assumed. On the other hand, Lambert and Ries think that they see indications for NLTE

effects in the strengths of the Fe lines in red giant atmospheres.

For _upergiants Luck and Lambert used high excitation C and N lines to determine the

abundances. These lines might also be vulnerable to NLTE effects. We might then perhaps

wonder whether the abundance determinations can be trusted for giants and supergiants.

Since early b_terior mixing in stars appears to be very important for the whole

evolutionary track and especially for the mass luminosity relation for later stages of stellar

evolution, it seems to be very valuable to confirm it in another, independent way and also

study for which stars it does occur and whether the degree of main sequence interior mixing

depends on stellar masses or on rotation or perhaps the binary nature of stars.

Such a possibility is offered bv the C II, C IV, Si IV and NV emission line fluxes originating

in tile transition regions between stellar chromospheres and coronae of cool stars. These lines

permit abundance determinations also for F and early G stars which are too hot for the CN

molecular bands to be studied.
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The possibility to determinerelative abundancesfrom transition layeremissionlineswas

first pointedout by Pottasch(1963),who found that for the sun the high ionization Felines

were too strong in comparisonwith other lines if Fe abundanceswere usedas acceptedat

the time for the solar photosphere.Higher abundanceswererequired. It is well known that

this discovery lead to the large revisionof the Fe oscillator strengths and photospheric Fe

abundances.

In their study of the emissionmeasuresfor transition layer emissionlinesof bright giants

andsupergiants,Hartmann, Jordan,Brown and Dupree (1985)find that for solarabundances

the Si III/C III] emissionline ratios leadto densitieswhich are inconsistentwith thosederived

from the CII doublet lines at 2326_. They found that this discrepancy can be removed by

using so-called "evolved" abundances as determined by Luck and Lambert and collaborators

with Alog (N/C) = 0.67 as compared to the solar value.

II. Observational Data

In this study we concentrate on transition layer emission lines in giants. For population

I giants we expect similar abundances for the main sequence predecessors. According to

theory we expect changes in the nitrogen to carbon abundance ratios for evolved stars. The

study of giants also offers the possibility to compare our results with those of Luck, Lambert

and collaborators. Data for the C II (1335 A), C IV (1550 ,_), Si IV (1394 _), NV (1240

r_) emission lines were collected from the literature. We mainly used data from Ayres et

al. (1981), from Oranje (1986) from Rutten (1987) and from Simon and Drake (1989).

We added our own measurements from newer IUE spectra and remeasured older spectra to

compare our measurements with those of other authors. In Table 1 we collect the basic data

for the stars for which we measured or rcmeasured the fluxes of the emission lines. In Table

2 we give the angular radii and the surface fluxes as determined by us. In Table 3 we give

the surface fluxes for giants as determined by other authors. We only list values for spectra

for which we estimate the measuring errors in the line flux ratio R L = fL(1)/fL(2) to be less
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than about 30% (Alog RL < 0.15).

In Figure 1wecomparethe differentmeasurements.Generally goodagreementis found.

In a few casesdeviations of up to +0.2 dex are found which can be traced back to better,

well exposed spectra being available now. Some stars appear to have time variable fluxes.

We want to point out that we compare surface fluxes. Differences in the determination

of angular radii also appear in this comparison while they cancel out when we determine

element abundance ratios. We generally used the Barnes-Evans (1976) method to determine

angular radii and surface fluxes.

III. Method of Abundance Deternfinations from Observed

Enfission Line Surface Fluxes

Element abundances can generally be expected to correlate with emission line fluxes,

which can therefore be used to determine element abundances provided that the excitation

processes are understood.

In the transition layers we find for optically thin lines and for collisional excitation and

radiative deexcitation that the surface emission line flux FL is given by

FL = Ex(T) Em(T) Nel/NH (1)

Ilere Em(T) is the emission measure, defined as

Em(t) = /Ah n_ dh = /alnT n2(dh/dlnT)dlnT' (2)

where the integral has to be extended over the line forming layer, which usually corresponds

to a laver over which the temperature changes by about a factor of 2 or AInT = 0.7. (See for

instance Pottasch 1963). The Ex(T) in equation (1) describe the collisional excitation rates

and depend on the collisional cross sections which are different for different lines. The factor

Nel/NIt in equation (1) describes the element abundance for the line under investigation. For
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a measuredsurfaceflux FL we can thus determine the product of Em(T) and the element

abundanceif the collisional crosssectionsareknown. Sincefor different lines originating in

the sametemperature rangethe emissionmeasureshave to be the same,wecan determine

the relative abundancesof thesedifferent chemicalelements. If the different lines studieddo

not originate at the same temperature but at different temperatures, we must still require

that the derivedemissionmeasuresarea smoothfunction of the temperature. Wecan thus

interpolate betweenthe known emissionmeasures.

For the SiIV lines at 1-100/_the commonlyusedEx(T) (Brown and Jordan 1981)were

correctedby a factor of 3.16 becauseotherwise the Si IV emission measuresalwayscome

out too high, which would indicate a higherSi abundance.On the other hand the emission

measuresderived for Si Ill often come out too low requiring a lower Si abundance. The

conclusion is (see Hartmann et al. 1985) that something is wrong with the Ex(T) for the

Si IV lines. We have determined an empirical correction using the Si IV emission lines of

main sequence stars for which the abundances are supposedly solar. This yielded a correction

factor Alog Em(SiIV) = -0.5. This correction has no influence on the N/C abundance

ratios determined here. It also has no influence on the discussion of silicon abundance changes

because we always compare with main sequence abundances.

In Figures 2a and 2b we have plotted the emission measures as a function of temperature

T for the line forming region for several main sequence stars studied by Ayres et al. (1981)

and for some luminosity class IV stars using solar abundances.* For all these stars the

temperature dependence of the emission measures can be well represented by the relation

Em (x T -12 with the deviations usually being Alog Em < 0.1. Some deviations are most

likely due to measuring uncertainties for the emission line fluxes which are estimated to be

of the order of 15 to 25% (i.e., 0.06 to 0.1 dex) and may occasionally be larger for faint lines.

* We used: log N/Co = 0.5 and log _ = 0.85 in close agreement with abundances

determined by Anders and Grevesse (1989).
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A theoretical interpretation for the simple relation Fm ocT -'_ wasgiven by us (B6hm-

Vitense 1987). The exponent"y can be determined from the ratio of the CII to CIV line

emission measures. If, assumingsolar abundance, the emissionmeasurefor the Si IV or

NV lines appeartoo large to be consistent with this relation, the increasedline strength

can be attributed to an increasedabundanceof theseelements. If the line is too weak, the

abundancemust be lower than solar.

In Figures3aand b wehaveplotted the emissionmeasuresobtained for somegiants and

supergiantsassumingthe samesolar abundancesas used in Figure 2, namely log C = 8.5

and log N = 8.0 as well as log Si = 7.65on the scaleof log H = 12. In Figure3a we see

that for thesegiants the ratio of the CII to CIV line fluxescould also be representedby the

relation Em c< T-1'2, though a somewhatsmallerexponent fits better for the supergiants.

In any caseit is quite obvious that the points for the NV emissionmeasuresare too high

for all thesegiants and supergiants. The NV line flux is too large in comparisonwith the

C lines. This indicatesa larger nitrogen abundance. The apparent increasein log Em for

the NV lines ascomparedto those for the C lines immediately tells us the actual increase

in log (N/C). It can be readoff directly from the plots (seeFigure 3) and comesout to be

.__Mog(N/C)= 0.6 and 0.5 for a Aqr and fl Aqr respectively, as shown by the length of the

arrows in Figure 3b. For/3 Cet and/3 Dra we find A log N/C = 1.10 and 0.24 respectively.

For e Vir a value of 0.6 is found for A tog N/C. Considering the uncertainty in the emission

line flux measurements and in d log Ern/d log T we estimate the uncertainty of the A log

N/C to be generally < 0.27 dex (see Chapter IV).

In Figures 3 we also see an apparent enhancement of the Si IV emission measures as

compared to the C emission measures, indicating an apparent increase in the $i/C abundance

ratio. From nuclear reactions we do not expect an increase in the Si abundances due to the

CNO cycle but we do expect a decrease in the C abundance due to the conversion of 12C to
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14N. In this process we expect 14N +12 C to remain constant. This leads to the relation

No 1 - ac ¢
N/C -= -- AC

C® 1 + _-4-_
(3)

where AC = -AN and where N, C, AC and AN stand for the number of particles per unit

volume. AC stands for the number of carbon nuclei which were converted into nitrogen.

Equation (3) is an equation to calculate AC/C® and thereby AC. For the solar abundances

given above and for N/C = 4 No/C O as determined above for _ Aqr we find A log C =

-0.27 = A log (Si/C) for a Aqr in very good agreement with the apparent enhancement of

the emission measures for Si relative to carbon as seen in Figure 3. It is the apparent increase

in the Si IV emission measures also seen for the other stars in Figures 3 which confirms that

N/C is enhanced for these stars by a factor of about 3.

For 7 Tau the ratio of the CIV to CII emission line fluxes appears to be variable,

it is always rather large (see Figure 4). This may possibly be related to the presence of a

companion or to large active regions on the stellar surface with large CIV/CII line flux ratios.

Flares may also be important. Reducing the C IV line flux to the usual C IV over C II line flux

ratio could increase the overabundance of N/C by about 0.2 dex, the estimated uncertainty

of our abundances determinations. This would bring the transition layer abundance ratio

into better agreement with the photospheric abundance determinations for this stars. A

similar though smaller effect is also seen for 01 Tau.

In Figure 5 we compare our results with photospheric abundance determinations by

other authors. The agreement is as good as may be expected given the uncertainties of

+0.2 dex estimated by all authors. If photospheric abundances have been determined by

several authors the transition layer abundances correspond rather well to the averages of the

photospheric abundances.

From the very meager statistics there is a suggestion that for the supergiants the

transition layer abundance ratios may come out somewhat lower than the photospheric ones.
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The photospheric determinations are based on NLTE analysis of the N I lines. Perhaps we

might also have to consider NLTE temperature stratification for these supergiants for an

even more accurate abundance determination. The transition layer value for a and /3 Aqr

correspond better to theoretical expectations. But this must not mean that they are more

correct. For/3 Aqr the C IV to C II line flux ratio is rather high, but not so for c_ Aqr. We

realize, however, that even for these two supergiants the agreement between the different

abundance determinations is still within less than 4-0.2 dex, the uncertainty estimate for

these kinds of analyses. For/3 Dra the discrepancy is especially large. This star is situated

right at the Linsky-Haisch boundary line. The NV line may possibly be weakened due to the

lack of high enough temperatures in its transition layer. In Table 4 we give the data used in

Figure 5.

From Figure 5 it appears that our method of N/C abundance determination from

transition layer lines is as accurate as photospheric abundance determinations. It is much

simpler and provides at the same time also the ratio of the carbon abundance relative to Si

though the excitation of the Si IV lines may not be very well understood. The transition layer

abundances are rather easy to study for a large number of stars and can also be obtained

for F and G stars.

It can easilv be shown that we do not even have to determine emission measures but can

directly' use the measured fluxes, because only line flux ratios are used in the analysis.

Unfortunately we cannot extend our studies to stars cooler than the Linsky Haisch

boundary line for chromospheric emission, because no C IV and N V lines can be seen

anymore. The very cool and very luminous stars cannot be analyzed in this way.

IV. Error Estimate

For well exposed spectra and reasonably strong emission lines the uncertainty in the

flux measurements for each line are less or about 25% or roughly 0.1 dex as verified by the

comparison of measurements by different authors. For underexposed spectra or very weak
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emission lines the errors may be twice as large. In this study we generally did not use

underexposedspectra. We thereforeestimate that for the stars studied the uncertainty in

the line flux ratio of the CII and CIV line is 0.2 dex. For weak NV lines the uncertainty

may in somecasesbe larger.

In order to determinethe emissionmeasureexpectedfor the temperature wherethe NV

lines are formed wehaveto extrapolate the emissionmeasureline from log T = 5.00to log

T = 5.176. In the worst casethe flux measurementerrors for the two lines could be in the

oppositesense.In this casethe error in the gradient dlog Em/dlog T would be0.382and the

error in the extrapolated Em for log T= 5.176would be + 0.07dex in addition to the error

in the C IV line flux leadingto an error of + 0.17 dex in the expected emission measure for

the NV line and correspondingly in the nitrogen to carbon abundance ratio.

In the other extreme the measuring errors for both lines could be in the same sense.

The gradient would then be correct and the error in the extrapolated Em would be 0.1 dex

leading to an error in the N/C ratio of 0.1 dex.

In addition we now have to consider the error in the NV line flux. If this is also 25%

as for the carbon lines then the maximum error in the N/C ratio could be 0._7 dez if all

errors add up which in general they will not. The more likely error would be the square root

of the sum of the errors squared which is 0.22 dex. For most of the giants studied here this

error estimate should hold. The NV line is however frequently weaker than the carbon lines

especially in stars in which nitrogen is not overabundant. In special cases the measuring

error for the NV lines can be as high as 50% or 0.2 dex. For these exceptional stars with

very weak NV lines the error could in the worst case increase to 0.37 dex if all errors would

add up which of course in general they will not. For stars with very weak NV lines an error

of 0.37 dex would be an upper limit for the error in the N/C abundance ratios.

Stars with normal nitrogen abundances are found in the F and early G star region where

surface fluxes are generally large. For the cooler stars surface line fluxes are generally smaller
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but nitrogen isoverabundantin thegiants. Forthe giantswethereforefind generallyNV lines

whichon wellexposedspectracanbemeasuredwith an accuracyof 25%. We thereforethink

that generally the upper limit for the errorsdiscussedso far is about 0.27dex. Exceptional

casesare mentionedin the text.

Are thereother uncertaintiesto beconsidered?A. Brown kindly pointed out to us that

the C II linesform at lowertemperaturesthan consideredhere. It appearsto us that this must

dependon the relation betweenelectrondensity and temperature in those lower temperature

regions. It will only be the caseif the lower temperature regionshavemuchhigher electron

densitiesor are muchmoreextended. If the CII linesdo indeedform at lower temperatures

than assumedhere then the Em(CII) will be larger. This will increasethe gradient dlog

Em/dlog T. This presumablywouldbe nearly the samefor all stars. The emissionmeasures

for log T = 5.176,the temperaturewherethe NV lines form, will then be higher for all stars

including the standardstars. Sinceweonly determineexcessabundanceratios ascompared

to the standard main sequencestarsthis doesnot affectour abundanceratio determinations.

This would beof importance if wewanted to determineabsoluteabundances.In that case

errors in the collisional excitation rates would also enter. For the determination of excess

abundanceratios all thesefactorsdo not enter as long as all stars studied hereare affected

in the sameway.

If the formation temperaturefor the CII lines should changealong the giant sequence

then this could influencethe abundanceresults. If for instance log T should changeby

-0.1 the required Em wouldincreaseapproximately by 0.5 dex. The Era(T) gradient would

becomesteeper than assumedand the N/C abundancewould have to be higher by about

0.1 dex. We seehoweverat presentno reasonfor sucha changeof the C II line forming

temperature along the giant sequence.

The Si IV lines are sometimeshard to measure. They form, however,at temperatures

intermediate betweenthe CII andC IV lines. The excessabundanceratio of Si/C is therefore

essentially independentof the adoptedemissionmeasuregradient. The uncertainty in the
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line flux measuremententersfull. For this abundanceratio we thereforeestimate the upper

limit for the error to be generally0.2 dex but for somestars might be as high as 0.3 dex.

Any changesin the excitation ratesalong the giant sequencein addition to the dependence

on the electrondensity could, however,introduce additional errors.

Figure 5 confirmsour error estimateswhenconsideringthat the photosphericabundance

determinationsalso have an uncertaintyof 0.2 dex at least.

V. Carbon, Nitrogen and Silicon Abundances for Giants Observed with IUE

A. The Data

In Table 5 we have collected the abundance ratios for N, C and Si as determined here

for the giants. The abundance ratios log Si/Cms were corrected for the reduced carbon

abundances. They were determined from the measured values Alog Si/C according to

(4) A log Si/Cms = A log Si/C + AlogC

where Alog C < O and was calculated according to equation (3). The A log Si/Cms thus

measure the apparent increase in silicon abundance as compared to the main sequence value.

B. The Temperature Dependence of the N/C Abundance Ratio

In Figure 6a we have plotted the A log N/C for the giants as a function of effective

temperature, as determined from the B-V colors (Bbhm-Vitense 1981; Flower 1977)

(interstellar reddening does not seem to be important for these bright stars as we checked

from their two color plots). We see an increase in the average N/C ratio at B-V _ 0.8 or

log Te_ = 3.73 with a fairly large scatter. Some of the scatter is certainly observational.

The maximum N/C ratios found here confirm the unexpectedly large admixture of CNO

processed material for these stars. According to the calculations by Sweigart, Greggio and

Renzini (1989) an increase of A log -_ = 0.55 is expected for the cool giants, i.e., for log T

-,_ 3.72, depending somewhat on the mass of the stars.
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Surprisingly we also find someF giants with an enhancednitrogen abundance. The

enhancementis up to twice the estimated error limit. No such large deviations to the

negativesideare found except for j3 Cas which is a _ Scuti star and the emission line fluxes

may perhaps be caused by the pulsation rather than by an equilibrium transition layer.

Further studies are necessary to clarify the problem of the apparent increases in the N/C

abundance ratios in the F giants.

C. Dependence of Deep Mixing on Rotational Velocities

In Figure 6b we have reproduced the data from Figure 6a for those stars for which

rotational periods are known. \Ve l_ave indicated different period length by different symbols.

Stars with large rotational velocities are generally found for B-V < 0.7. They have mostly

low N/C ratios, though there are some exceptions. No correlation of N/C with rotational

periods can be established for the stars with B-V < 0.7.

Large N/C ratios are found mainly for cooler stars with generally low v sin i. No

dependence on rotation can be established for the cool stars either.

D. Dependence of Deep Mixing on Luminosity

In Table 6 we give the absolute magnitudes for the giants studied here, as determined

bv various methods, as explained in the table.

In Figure 6c we have plotted the N/C abundance ratios again as a function of Teg

but indicated different magnitudes by different symbols. No dependence of abundances on

absolute magnitude is apparent for a given range of Teg, at least not for the limited range

in Mv covered by our program stars.

E. The Strength of the Si IV Lines

In Figure 7 we have plotted the derived A log N/Si. A general increase is observed as is

to be expected for an increase in the nitrogen abundance. For some of the F giants we find,

however, negative values, which if real, would mean either a decrease in nitrogen abundance,

not verified by the N/C abundamce ratio, or an increase in the silicon abundance which would
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bevery surprising. Further studiesareneededto clarify this problem. For severalcoolgiants

the increasein N/Si is not as largeasexpectedfor the increasein nitrogen abundance.The

Si IV line strengths for thesestars also appear to be enhanced. It remains to be studied

whether this increasein the Si IV line strength is in fact due to an increasein the silicon to

carbon abundanceratio, or whether it might be due to a blend with another line, perhaps

the OIV forbidden line at 1401._. The line profiles on low resolution spectra suggestat

most a small contribution from the OIV line. The availablehigh resolution spectrafor cool

giants areeither underexposedor do not showan additional line around 1400_,,whichcould

contribute.

In Figure 8 wehaveplotted the A log Si/Cms abundance ratios as a function of Tett. We

again find apparently increased Si abundances by up to a factor of 2 for some F stars. They

are preferentially stars with low v sin i. We wonder whether these stars might be descendents

of Am or Ap stars as was suggested by T. Wheeler (1991), for these the surface abundances

of carbon are decreased or the surface abundances of silicon increased supposedly due to

diffusion. We also find apparently increased Si abundances for the cool giants with large

N/C ratios indicating deep mixing. For these stars any surface abundance changes due to

diffusion should be wiped out. Though the increases in Si IV line strength are not very large

we do not think that all of them are just measuring uncertainties because we do not find a

comparable number of negative A log Si/Cms. We also find increased Si II (1808, 1816 1_) line

strengths for many of the stars with increased Si IV line strengths. Clearly further studies

are needed to clarify the excitation of the Si IV lines and also to determine photospheric

abundances.

Itelfer and Wallerstein (1968) determined Si/Fe ratios for several giants. The only star

in common with our program stars is 6 Boo A for which they find [Si/Fe] = 0.09 and [Fe/H]

= -0.57, while we find here [Si/C] = 0.44. No C or N abundances could be determined by

tlelfer and Wallerstein.
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Luck (1991)and McWilliams (1990) studied heavy elementabundancesin giants with

Teff < 5500 K. Luck finds generallya nitrogen to carbon abundanceratio in agreement

with our determinationswithin the limits of error. His determinations indicate, however,a

reductionin carbonabundancelarger than expectedfrom theincreasein the N/C abundance

ratio by about 0.25dex in the average.Luck finds an increasein the Si/Fe abundanceratio

by 0.23dex in the averageas comparedto solar values. Comparing the silicon abundances

to solar silicon abundancesan increaseof 0.1 dex is found in spite of the averagelower Fe

abundancesascomparedto the sun and in spite of the lowercarbon abundances.

For the G and K giants (B-V > 0.7) wedetermineherean averageincreasein the silicon

to carbon abundanceratio by 0.15 dex as compared to the main sequenceF stars, which

supposedlyhavesolar abundances.

McWilliams does not give carbon or nitrogen abundances. From his data an average

increaseof the silicon to iron abundanceratio of 0.15dex is found for the stars studied by

US.

For the G and K giants the different studies thus seem to be in fair agreement.

It may nevertheless be interesting in this context to note that Feldman, Widing and Lund

(1990) find increa:_ed Si 1V, SilII and SiII transition layer line strengths in plage regions,

which they interpret as an increased silicon abundance in those regions.

To clarify the problem of the silicon abundances in the transition layers photospheric

silicon abundances need to be studied in F main sequence and giant stars studied here so we

can compare abundance changes seen in the photospheres and in the transition layers.

F. Relation Between Nitrogen Enrichment and Lithium Abundances

In Table 5 we have also listed the lithium abundances determined by Brown et al. (1989),

and Lambert, Dominy and Sivertsen (1980) and by Luck (1991). If the nitrogen enrichment

is due to deep mixing we must expect also a destruction of lithium. In Figure 9 we compare

the trends of the Li and N/C abundances. Comparing with the lithium abundance of
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log _(Li) ,-, 3 (if log ¢(H) = 12) for the interstellar medium we find a reduction of e(Li)

by a factor of 4 for log Tetr = 3.74 and by a factor of 100 for log Tea " 3.70, the temperature

for which the nitrogen abundance starts to be generally high. A reduction of this order is

according to Iben (1967) expected due to the mixing of the lithium rich surface layers with

the lithium poor convection zones of increasing depths. For log Tefr = 3.7 when nitrogen rich

material has been mixed to the surface the convection zone reaches deep into the lithium

burning region and further reduction in lithium abundances must be expected and seems to

be indicated for log Te_ < 3.7. It is still continuing with a timescale of about 105 years, a

surprisingly long time after the nitrogen enrichment, when we expect very short timescales

for the lithium burning at the bottom of the convection zones. It is not clear whether for

such low temperatures we may see lower mass stars on the red giant branch or whether we

are still dealing with the same mass range as for the higher temperature giants. If so then

the slow decrease in e(Li) must mean that the mixing of the surface material down to the

lithium destruction layers is a rather slow process for these cool giants.

VI. Summary

We have shown that the Carbon to Nitrogen abundance ratios can be determined from

the emission line fluxes of the CII, CIV and NV lines originating in the lower part of

the tra_lsition regions between stellar chromospheres and coronae. For stars in common

the abundances obtained in this way agree with those obtained from photospheric studies

by Luck, Luck and Lambert, and Lambert and Ries within the quoted error limits of

Alog N/C ._ ±0.22.

The abundance analysis by means of transition layer lines permits us to determine

nitrogen and carbon abundances also for F and early G giants for which CN molecular

bands cannot be analyzed. We can thus follow the evolution of the N/C abundance ratio

along the giant branch. We find a general increase in tile N/C ratio by roughly a factor of 3

to 6 for B-V > 0.8. A factor of about 4 is expected theoretically (see Sweigart, Greggio and
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Renzini 1989)for increasinglydeepermixing when the outer convectionzonereachesdeeper

into the regionwhere CNO processinghas taken placeearlier. The high degreeof nitrogen

enrichment in somestars is, however,surprising. Additional mixing appearsto be required

at least for somestars.

The analysisalso seemsto indicatean increasingsilicon enrichment for most coolgiants.

It remainsto be seenwhether this is real. Sofar we havenot found any reasonto explain

the strengthsof the Si IV linesother than by increasedabundances.If so,the reasonfor this

remainsobscure.The excitation of the Si IV lines may not yet be well understood.
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Table3
SurfaceFluxesgivenbyotherAuthors

andRemeasuredin thisPaper

STAR FL(CII) a FL(CIV)" FL(SiIV)a FL(N V)a Reference
oGem 5.12 5.30 5.01 4.58 c
25Mon 5.10 5.30 5.05 4.36 c
t Vir 4.51 4.68 4.49 3.92 d
31Com 5.22 5.52 5.14 4.62 d
35Cnc 5.08 5.45 5.11 4.97 c
V3Psc 4.89 5.36 .... b .... b C
24UMa 4.44 4.42 4.51 4.18 d
HR 9024 4.74 5.14 .... b .... b c
eVia" 3.08 3.20 2.97 2.82 d
13Her 3.18 3.30 3.00 2.88 d
01Tau 3.66 3.76 3.76 3.42 d
-¢Tau 3.24 3.52 3.43 3.! 4 d
[_Gem 2.49 2.67 2.87 2.4(I d
E Tau 3.08 2.89 3.15 3.20 d

13Cet 3.42 3.42 3.60 3.70 d

a log of surface fluxes are in unit of erg cm -2 s I.

b the line is measureable but was not given in this study.
c Simon and Drake 1989

d Oranje 1986
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Table 5

Excess Abundance Ratios as Compared to Solar Abundances
Determinations from our flux measurements

Star B- V Alog N/C Alog N/Si Alog Si/Cm.s." log E(Li) i
o Gem 0.40 0.01 0.05 -0.06 ....
25 Mon 0.44 -0.03 -0.31 0.29 ....
t Vir 0.52 0.02 0.01 0.01 ....
31 Com 0.67 -0.06 -0.20 0.15 ....
35 Cnc 0.68 0.30 0.35 -0.14 ....

_g3 Psc 0.69 -0.06 -0.13 0.08 ....
24UMa 0.77 0.59 0.15 0.21 ....
HR 9024 0.79 0.66 0.46 -0.07 ....

6 CrB 0.80 0.17 0.20 -0.08 1.2 d
UMi 0.89 0.50 0.12 0.20 ....

_, Hya 0.92 0.66 0.55 -0.16 1.3 d
¢ Vir 0.94 0.62 0.16 0.21 0.09 •

13Her 0.94 0.26 0.05 0.13 ----

01Tau 0.95 0.68 0.23 0.17 0.86 e

Boo 0.95 0.37 -0.19 0.44 0.8d,0.9e,0.85 f

"¢Tau 0.99 0.42 -0.03 0.31 0.7d,1.11 •

13Gem 1.00 0.49 0.06 0.25 0.6d,0.44 e

eTau 1.01 0.87 0.15 0.31 1.2d,0.9 e
13Cet 1.02 1.10 0.44 0.08 <0.2d,<0.3 e

Determinations from flux measurements of other Authors

20 Peg b 0.34 0.35 -0.22 0.46 ....

13Casc 0.34 -0.37 -0.33 0.02 ....
HR 1889 b 0.43 0.33 0.00 0.22 ....

45 Aur b 0.43 0.49 0.06 0.25 ....

18 Com b 0.43 -0.04 -0.13 0.10 ....

HR 8191 b 0.47 0.28 0.15 0.04 ....

ct Aur Abg 0.60 -0.08 -0.20 0.14 2.4 h

v Peg: 0.61 -0.19 -0.17 0.02 ....
FK Com e 0.84 0.29 0.02 0.18 ....

p Cyg: 0.89 0.91 0.43 0.05 0.9d,0.97 f
c_Aur Aag 0.90 0.17 -0.22 0.34 1.2 h
10 LMi c 0.92 0.55 0.11 0.23 ....

rl Her': 0.92 0.65 0.23 0.16 0.9d,0.93 f
Her c 0.94 0.66 0.30 0.09 1.3 d

0 Cenc 1.01 0.82 0.23 0.22 -0.39 e
Z.And e 1.01 -0.08 -0.05 -0.01 ....

12Cam ¢ 1.12 0.76 0.32 0.11 ....

o Gem e 1.12 0.72 0.45 -0.04 <0.3 d
DK Dra c 1.14 0.46 0.23 0.07 ....

ot Ari c I. 15 0.54 -0.17 0.51 <0.0d,<0.3 e

a the carbon abundance has been adjusted to main sequence value.
b Simon and Drake 1989

c Oranje 1986
d Brown et al. 1989.

e Lambert et al. 1980.
f Luck 1991

g Ayres 1988

h Boesgaard 1971

i Only the flu'st values are plotted in Figure 9. Other values are presented to show the range
for the Lithium abundance determinations.
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Captions

Figure 1. We compare our measurements of surface line fluxes with those of Oranje

(1986) and Simon and Drake (1989).

Figure 2. The temperature dependence for the emission measures of solar abundance main

sequence and luminosity class IV stars is shown in 2a and 2b, respectively. We generally

find Em 0t T -1.2-_-2 (solid lines).

Figure 3. When the temperature dependence for the emission measures is determined from

the C II and C IV lines in giants and supergiants (dashed lines), excess emission measures

for the Si 1V and N V lines are found when solar abundances are assumed as seen in 3a and

3b, respectively. The apparent excess in the emission measures for the Si 1V and N V lines

is due to larger abundance ratios N/C and Si/C. The deviations from the T't relation

(dashed lines) deternfined from the carbon lines give the abundance changes as shown in

Figure 3a and 3b. This indicates a decrease in the carbon abundance and an increase in the

nitrogen abundance. Solid lines are the best fit to the Em ot T -1-2 relation.

Figure 4. The transition layer emission measures are shown as a function of effective

temperature for some stars which were also studied by Lambert and Ries (1981). Excess

nitrogen abundances are also found from the transition layer lines.

Figure 5. The photospheric excess abundance ratios, as compared to solar abundance

ratios of nitrogen to carbon, obtained by other authors, are compared with the ones found

here from the transition layer lines. The limits of error for both our study and the

traditional approach of the other studies are shown in the lower right comer. The diagonal

solid line would be obtained for perfect agreement. All stars are giants except the open

circles which are supergiants from the Luck and Lambert (1985) paper.

Figure 6a. The excess abundance ratios of nitrogen to carbon (as compared to solar

abundances) are shown for giants as a function of effective temperature. The nitrogen to

carbon ratio increases for cooler stars.

Figure 6b. Figure 6a is reproduced for stars with known rotational periods; different

rotational periods are indicated by different symbols as explained in the Figure.



Figure6c. Figure6ais reproduced,butabsolutevisualmagnitudesareindicatedby
different symbols.

Figure7. Theexcessabundanceratiosof nitrogento silicon,ascomparedto thesolarone,
areplottedasafunctionof effectivetemperature.

Figure8. Theabundanceratiosof silicon to carbon(adjustedto mainsequencecarbon
abundance,seetext) ascomparedto thesolaronesareshownasa functionof effective

temperature.

Figure9. Lithium abundanceandexcessabundanceratiosof nitrogento carbon(as
comparedto solarabundances)areshownfor thesamesampleof giantsasa functionof
effectivetemperature.
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Abstract

Gray found that field giants with Teff < 5500 K experience a steep decrease in rotational

velocities coupled with a decrease in transition layer emission. He attributes this decrease to

fast magnetic braking. Endal and Sofia and Gray and Endal find that it can also be explained

by redistribution of angular momentum for rapidly increasing depths of the convection zones

if these rotate with depth independent specific angular momentum.

We represent here additional arguments in favor of the latter interpretation: The increase

of N/C abundances due to deep mixing occurs at the same point as the decrease in v sin i.

On tile other hand, the ratios of the CIV to CII emission line fluxes decrease at this point

indicating smaller contributions of MHD wave heating. The X-ray fluxes decrease at nearly

the same Tel r. \Ve thus find no observations which would indicate larger magnetic activity

which could lead to fast magnetic braking.

Theory predicts a rapid increase in the convection zone depth at the T_er where the

decrease in v sin i is observed. This can explain the observed phenomena.
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1. Introduction

1.1. Rotational velocities

Gray (1981, 1982) pointed out that along the giant evolutionary sequence the rotational

velocities v sin i appear to decrease abruptly around spectral types G5 to G8 III. This was

later (1989) revised to a decrease at GO III. Gray also pointed out in 1982 that correlated

with this occurs a steep decrease in the C IV emission line fluxes at 1550 ,_ originating in

the transition layers between stellar chromospheres and coronae. Simon and Drake (1989)

state that they cannot confirm a steep decrease of v sin i at G5 III but instead see a smooth

decline for stars later than GO III. They explain their different conclusion by the fact that

Gray did not consider upper limits for v sin i while they included them. Gray as well as

Simon and Drake suggest that magneto-hydrodynamic braking due to stellar winds decreases

the rotational velocities of the giants when they evolve to lower effective temperatures. On

the other hand, Endal and Sofia (1978), and Gray and Endal (1982) point out that the

expansion of the stars on the red giant branch together with the rearrangement of angular

momentum due to the increasing depth of the convection zones may well explain the decrease

of v sin i for cool giants. They find that if convection zones rotate with depth independent

specific angular momentum the observed decrease in v sin i is obtained also theoretically. If

on the other hand convection zones rotate as rigid bodies, presumably due to large turbulent

viscosity then additional presumably magnetic, fast braking is required.

Rutten and Pylyser 1982) estimate magnetic braking times from tim observed decay

times for rotation of main sequence stars in galactic clusters of known ages (Skumanich

1!)72). They find that these ])raking times are longer by about a factor of 10 at B-V --, 0.8

than the giant evolution times. They also argue that the decrease in v sin i is actually more

stnooth t[lail found t)v Gray and claim that the decrease can be explained by the changing

moments of inertia for the expanding giants.

The question then is whether the steep decrease in v sin i is due to a rearrangement of
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angular momentum in the deep convection zones as suggested by Endal and Sofia (1979) and

Rutten and Pylyser (1988), or whether a fast magnetic braking takes place with increasing

depth of the convection zone as favored by Gray (1981,1982) and by Simon and Drake (1989).

If fast magnetic braking is responsible we would need an increase in the braking efficiency

of the stellar winds at the phase of rapidly decreasing v sin i. This will presumably require

higher densities or higher temperatures of the coronae. We might then expect stronger X ray

emission at these effective temperatures which would probably also mean higher transition

layer emission line fluxes. The larger depth of the convection zone might perhaps lead to

stronger dynamo action which could cause such effects. If so this could lead to a larger

contribution of magnetic heating.

\Ve will test here whether any of these effects expected to be seen for fast magnetic

braking can actually be observed.

We will rediscuss the question of the decreasing v sin i making use of known measured

values of v sin i as compiled by Rutten (1987), Simon and Drake (1989), Gray (1989) and

_Iaggio et al. (1990). \Ve will also make use of the CIV to CII line flux ratios for giants. We

argue that these line flux ratios are larger for large MHD wave contributions to tile heating

of transition layers (BShm-Vitense and Mena-Werth 1991a). They are thus an indicator of

magnetic activity.

We will discuss in this context the X-ray observations for giants published recently by

._laggio ctal. (1990), which are also a measure for magnetic activity.

1,2. Heating mechanisms for chromospheres and transition layers

Simon and Drake suggest that different kinds of mechanical energy input may be

l'esponsible for the heating of transition layers in F stars and in G stars.

In a separate paper (B6hm-Vitense & Mena-Werth 1991a) we have also studied the

question of different heating mechanisms for different stars. \Ve found that for giants large

(I IV/C II line flux ratios correlate with high rotation velocities and some small optical light



variations indicative of large starspots. We showedthat large RcIv= F(C IV)/F(C II) line

flux ratios are also correlated with largetransition layer emissionline fluxes. Here "large"

RClV meansabout 2.5 as opposedto 1.25 for socalled "low" valuesof RcIv. Large RClV

valuesalsocorrelatewith temperatureincreasesin the high photosphericlayersby up to 300

K as indicated by an increasein the continuousflux for wavelengthsaround 1950_. This

temperature increasewas attributed to heating by magnetohydrodynamic (MHD) waves

rather than to acoustic waves,becauseacoustic wavescannot deliver their energy in the

high photosphericlayerswherethey havenot yet steepenedto shockwaves.Iteat conduction

down from the chromosphere does not supply enough energy. We therefore argue that

"'large" values of Rctv are indicative of mainly MHD wave heating in the transition layers

while smaller values of ttctv show a smaller contribution of this heating mechanism.

From the theoretical point of view different line flux ratios may be expected for different

heating mechanisms but not for different fluxes of the same kind (B6hm-Vitense 1987). Only

different heating mechanisms have different height dependences of the energy input leading

to different temperature gradients in layers with different temperatures. The C II and C IV

lines originate at very different temperatures, about 30,000 K and l0 s K. Their flux ratio is

independent of changes in tile carbon and nitrogen abundances. Measured values of Rclv

can therefore be indicative of the heating mechanism at work.

1.3. Surface element abundances in giants

Sweigart and Mengel (1979) emphasized already that increased N/C abundance ratios

are found for giants at the same T,_tr where v sin i decreases. Deep mixing might therefore

_e responsible for the decrease in v sin i.

Changes in surface abundances occur in the IIR diagram near the knee at the bottom

of the red giant branch (see Brown 1987 for observations in M67 and B3hm-Vitense &

Mena-\Verth 1988, 1991b. and Lambert & Flies 1981 for observations of field giants), when

convection becomes very efficient and rapidly extends the depth of the convection zones
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which then reach deep down into the envelopes close to the hydrogen burning shell sources.

Previously C and N abundances in cool giants were determined from photospheric

molecular lines which can, however, for giants only be analyzed for Teff < 5000 K.

From the transition layer emission lines we determine these abundances also for higher

temperature giants (Bghm-Vitense & Mena-Werth 1991b) and thereby determine a fairly

accurate value for the Teff at which the N/C abundance ratio increase. We can then see at

which point and how fast the convection zone extends into the region where CNO nuclear

processing has occurred.

2. The Observations

2.1. Rotational velocities of giants

In Table 1 we have listed giants for which reliable data for the rotational velocities v sin

i are available. We have relied on the compilations by Rutten (1987), by Simon and Drake

(1989), Maggio ct al. (1990) and Gray (1989). For the stars in Table 1 we also know either

C II and/or C IV line fluxes or X-ray fluxes. These stars are all field giants though they

include tile ttyades giants. They are expected to have had nearly solar element abundances

while on the main sequence.

For a narrow range in absolute magnitudes they should also be of comparable ages except

for B-V _> 1.1 where the population II red giant branches and the population I giants appear

in the same part of the ItR diagram. Population II giants are rare in the field. Some old

population I giants could however be enclosed in our sample of the coolest giants.

Many of the giants studied here are spectroscopic binaries. If we were to omit all these

stars the statistics wouht become too poor. We therefore keep many of these stars in the

sample (except if they have an F star companion) but list their peculiarities. We have to

keep this in mind for the discussions.

We have, in Table 1, omitted stars for which only upper limits of v sin i are available or
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stars for which the uncertainties appear to be larger than about 50%. For random orientation

of the rotation axes sin i --_ 0.8. If we assume sin i = 1 the average error in v should be

Alogv ,-, 0.1.

In Figure lb we have plotted the log (v sin i) as a function of log Ten, where Ten has been

derived from the B-V colors, using the calibration of BShm-Vitense (1981) and Flower (1977).

If we assume that during expansion each mass element conserves its angular momentum (case

1 and v OC 11 of Gray and Endal) we expect the angular momentum w to vary as w c< k-_ ti:

L

(see also Endal & Sofia 1979). With R 2 o¢ _ we find for evolution with roughly L --_ const

that v a¢ -_ oc T_t [. While many of the stars with B-V < 0.8 follow this line many others do

not. There are several stars with B-V < 0.5 which fall below the T2t_ relation. Most of these

stars are known spectroscopic binaries or are suspected to have variable radial velocities. We

therefore suspect that these stars may possibly be all close binaries and that their rotational

velocities decrease during their evolution because of braking by binary interaction. There

may, of course, also be some stars which started out with a lower rotation velocity on the

main sequence. Several stars first follow the relation v c< T2ff but for B-V ,_ 0.8 we find

a steep decrease in rotational velocities as found by Gray, reaching a minimum around B-V

0.98 to 1.00. For still larger B-V only a few stars like the RS CVn stars still have or

achieve higher rotational velocities supposedly due to binary interaction. A And seems to be

one RS CVn star with low v sin i but only an upper limit of v sin i < 19 km s -1 is known.

These stars probably never reach very low v sin i. Binary interaction may prevent this. If

they should reach low v sin i they are possibly not identified as RSCVn's because of their

relatively low emission line fluxes at this stage.

Most of the stars which have experienced the rapid decrease in v sin i are classified as

CtI or CN peculiar because o[ their peculiar molecular band strengths. They are indicated

i)y the symbol p in Figure 1.

A small group of stars experiencing some decrease in v sin i already for B-V --_ 0.7, does
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not seem to show the peculiar molecular band strengths. Perhaps these stars have slightly

different masses than the other stars.

2.2. Transition layer emission line fluxes

In Table 1 we also give the observed C II (1335/_) and C IV (1550 A) emission line fluxes.

The data are based on the compilations by Simon and Drake (1989), Rutten (1987) and the

data of B6hm-Vitense and Mena-Werth (1991a). Uncertain values are indicated by brackets.

In Figure la we have plotted the C IV surface fluxes as a function of Teff. As was

discussed by Simon and Drake the emission line fluxes are nearly independent of T_g for

B-V < 0.75 or Tdt >_ 5600 K. For lower Teg a steep decrease in the emission line fluxes is

seen parallel to the decrease in v sin i. For temperatures below _4700 K only RS CVn stars

still have C IV emission line fluxes comparable to the early G giants. (The behavior of the

C II lines is similar to tile one of the C IV lines, because the differences in the C IV/C II flux

line ratios are only a factor of 2 at most.)

We see no indication for increased transition layer emission at the phases of fast decrease

of v sin i. This means we see no indication of increased dynamo activity.

2.3. Ratios of the C IV to C II emission line fluxes

:ks discussed by Bghm-Vitense and Mena-Werth (1991a) the ratio Rctv F(CIV) can= F(CU)

give us information about the heating mechanism for the transition layers and chromospheres.

\Ve have therefore in Figure lc also plotted log RcIV = log F(CIV)F(CII)as a function of Teff.

The scatter in this graph is large. Comparing different measurements of emission line

fluxes for the same spectra we find differences of A log F --- 0.1, telling us that this is

the uncertainty of tile flux measurements. For the flux ratio an uncertainty of at least 0.2

(lex may therefore be expected. Nevertheless some general trends may be recognized in

Figure 1c: Looking first at the F and early G giants we see a decline in Rely parallel to

the decline in v sin i for the spectroscopic binaries and a few other stars with lower v sin i.
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Notice that some of the stars seen in Figure lb are missing because of uncertain or unknown

flux measurements. The decrease in RcIv indicates, in our opinion, (see BShm-Vitense &

Mena-Werth 1991a) a decrease in the MHD wave heating contribution.

The RcIv values remain high for the stars whose rotation follows the v cx T2_. relation

but then drop also for log Te_ < 3.7 when the v sin i drop for all stars. This in our opinion

again indicates that the contribution of MHD wave heating decreases when v sin i drops.

There is again no indication of increased activity due to the larger depth of the convection

zones. One RS CVn star is found with a moderately low RcIv value, which can, however,

be just due to the uncertainty in the measurements. Otherwise it seems that for RS CVn

and FK Comae stars MHD wave heating is always the main contribution to the heating.

In Figure lc the point for 3' Tau was omitted because the C IV line appears to be highly

variable as seen from Figure 2 where we compare 4 low resolution spectra of 3' Tau taken

by different observers at different times but with similar exposure times. For this star the

smallest Rcw value is observed for the lowest continuum flux around 1950 _in the spectrum

SWP 27912.

For the stars with log Tetf > 3.8 the surface line fluxes do not follow the trend of the

RClV as seen when comparing Figures la and lc. One might expect that for decreasing

MHD wave heating the line fluxes might decrease. It appears, however, that for F giants

the acoustic flux generation and deposition increases with decreasing Te_ because of the

increasing densities and extends of the convection zones (see also Bohn 1984 and Gilliland

1986). This seems to compensate for the decreasing MHD wave heating.

2.4. Nitrogen and Carbon surface element abundances

In Figure 3b we have plotted as a function of Teff the surface abundance ratios of N/C as

determined by Lambert and Ries (1981) from photospheric molecular bands (strong enough

CN bands are only seen for log Tefr < 3.70) and as determined by B6hm-Vitense and Mena-

Werth (1988, 1991b) from transition layer emission line fluxes. (For consistency we use here
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for the Lambert-Ries stars also the T_g as determined from the B-V colors, rather than using

the Teg given by Lambert and Ries. In essence we plot everything as a function of B-V.)

BShm-Vitense and Mena-Werth determine changes in the N/C ratio as compared to

main sequence stars. As seen in Figure 3b they then find for most F and early G giants

A log N = 0 + 0.15. /3 Cas and a few other stars are exceptions. (/3 Cas is a 6 Scuti

star. The emission line strengths may be influenced by pulsation. If so our method of

analysis is not applicable and the derived N/C abundance ratio is probaly in error. The CIV

line is unusually strong ,leading to the apparently low nitrogen abundance determination).

Lambert and Ries determine abundances only for cool stars with molecular bands. They

determined values of C/H and N/H from which we determined the N/C abundance ratios.

A log N/C can then be obtained from the adopted main sequence value for N/C. A solar

value (C/N)o = 4.8 was given as reference value by Lambert and Ries. We adopted for our

studies a somewhat lower value, namely (C/N)Ms = 3.16. This gives a better representation

of the emission line fluxes for main sequence F stars. It is also the solar abundance ratio

given by Anders and Grevess (1989). For a given star the Lambert and Ries values for A log

N/C come out larger by about 0.15 which can be attributed to the different values of (C)Ms

used for the two data sets.

The observed increase in the N/C abundance ratio is in rather good agreement with the

one predicted bv theoretical studies by Sweigart, Greggio and Renzini (1989) as shown by

the solid line in Figure 3b. We notice, however, that larger N/C ratios are already observed

for some stars with log Teff > 3.71. This might be partly due to lower masses of the stars.

According to the calculation by Sweigart et M. increases in the N/C abundance ratios start

to occur at somewhat lower Teff for stars with somewhat lower masses.

Unexplained are the higher N/C abundance ratios observed for some stars with log T_

around 3.82. If this anomaly is contirmed by additional observations it may show that these

stars are descendants of Am or Ap stars (Wheeler 1991) whose surface abundance in carbon
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was reduced presumably due to diffusion. (Some Ap stars also show reduced surface carbon

abundance). If so this anomaly should disappear when the convection zone increases in

depth. This may be observed for log Teff "_ 3.77. Clearly more observations are needed for

this range in Teff •

Also unexplained are the very large N/C abundance ratios (_10) seen for some stars

with log Teff < 3.73. Maybe these are clump stars which have experienced some additional

mixing during the helium flash or maybe they have experienced mass transfer from an evolved

star?

In any case while there are a few peculiar stars like DK UMa (classified as RS CVn

star by Kholopov 1985 but as a pulsating star by Henriksson 1977), or HR9024, a strong

emission line star, the A log N/C increase generally for log Teff < 3.72 where we observe

tile decrease in v sin i as seen by comparison with Figures lb and 3b. It is interesting to note

that DK UMa does actually have a higher N/C abundance consistent with its low v sin i.

Either it was mixed at a somewhat earlier state of evolution than the other stars (perhaps it

has a lower mass) or its B-V does not indicate its real T_ff and it is actually cooler. HR9024

seems to be at an evolutionary stage where it is just being mixed. The RS CVn star

And apparently is not deeply mixed. Perhaps a stronger magnetic field may suppress the

_'fficiency of convection ill this star or its B-V does not indicate its correct Tell. Its v sin i is

<19 kms -1 and is probably mainly determined by tidal interaction. It appears to be metal

delicient (IIelfer and \Vallerstein 1968) and therefore probably of low mass.

2.5. X-ray observations

Observed values for X-ray fluxes f× have been collected bv Maggio ctal. 1990. We

have determined angular diameters for the giants by means of the Barnes-Evans method

(Barnes-Evans 1976) and calculated surface fluxes, as given in Table 2.

On the sun X-rays are preferentially emitted in coronal loops (Ftosner, Tucker and Vaiana

1978). If the same holds for the giants then we may expect that X-ray emission increases
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with increasing dynamo strength which means with increasing v sin i, as is generally thought.

We see no indication of increased X ray fluxes at the phase when v sin i drops. We thus

see no indication for increasing dynamo strength and stellar winds. In Figure 3c we find a

steep decrease in X-ray fluxes for stars with log Teff < 3.72 in near agreement with the Teff

for the steeply decreasing v sin i values (log Teg ,-_ 3.683). We notice however, that at least

one star, DK UMa, has already a tow v sin i while its X-ray flux is still high. Because of

the uncertainty in sin i we cannot be absolutely certain that its rotation velocity has indeed

decreased, though the low value of RClV supports this assertion. If so, it means that the

fields mainly responsible for the coronal X-ray emission have decay times longer than the

decay time for tile rotation velocity and for the RclV.

Tile stars with the low X-ray fluxes all have low v sin i and low F(CIV). To our surprise

we do, however, also find a fairly large number of stars in the same T_ff range including

several RS CVn stars which have a 10 times higher X-ray surface flux than most of the stars

with 3.65 < log T_ff < 3.70 and about 100 times more X-ray surface flux than /3 Gem

and _ Cyg. Not all of these stars are close binaries. 7 Tau has an X-ray flux 3 times higher

than corresponding to its low v sin i values, suggesting that at least sometimes it has some

unusual activity.

It is interesting to note that tile otherwise apparently similar 3 Hyades giants show very

different X-ray emissions, _ and 01 Tau differing by almost a power of 10, yet their v sin i

values are very similar.

3. Interpretation of the Observations

3.1. Reduction of rotation by deep convection

The compilation of well known v sin i values here confirms the conclusions by Endal and

Sofia and bv l/utten and Pylyser that for giants the decrease in rotation velocities for stars

with log T_ff > ;/.7 is generally due to the expansion of the stars along the giant branch. At
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the base of the ascending red giant branch deep mixing occurs due to the increasing depth

of the convection zone as expected theoretically and as verified by the increase in the N/C

abundance ratios. The decrease in v sin i occurs at the same Tell'.

The coincidence of the decrease in v sin i and the deepening of the convection zones

is strong support for the conclusion that this decrease is due to mixing. The temperature

for which the convection zones reached deepest into the star agrees with the temperature

for which the low v sin i are reached, (see Figures 3a and lb), and where the highest N/C

abundance ratios are reached (see Figure 3b). If we assume that before mixing the star was

rotating approximately as a rigid body then the deeper layers have a much lower angular

momentum than the surface layers. Convection transports this low angular momentum

material to the surface leading to the lower surface rotation. The close agreement between

the observed decrease in v sin i and the one calculated by Gray and Endal 1982 for the case

of depth independent specific angular momentum for stars of 2.5 and 3 M® (see the squares

in Figure lb) shows that the convection zones rotate most probably in this mode, at least

during the time of increasing convection zone depth. Given enough time it may perhaps be

possible for turbulent viscosity to influence the angular momentum distribution somewhat.

This might perhaps lead to the slight increase in v sin i which seems to be observed for some

of the cooler, apparently single giants. If the slight increase in v sin i for the cooler single

stars can be verified by more observations this would be a strong argument against magnetic

braking. At present the evidence is too weak to use this argument.

For these low Te_ we may also see stars of lower masses and larger ages. Gray and

Endal's calculations give slightly' higher v sin i for lower mass stars, if they start out with

the same v sin i at the main sequence. Lower mass main sequence stars do, however, have

lower v sin i when they leave the main sequence than the A stars. They are then expected

to have lower v sin i than the more massive stars when they start to climb up the red giant

branch. While this question is not settled it seems that the possibly higher v sin i for single

stars with log T_g ..o 3.68 cannot be understood in this way.
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3.2. Fast magnetic braking of rotation?

Rutten and Pylyser estimate magnetic braking times of about 5 • 107 years for giants

with B-V _ 0.8 while for several stars the decline of v sin i happens in about 3 million

years as seen from a comparison of Figures 3a and lb. Faster magnetic braking might be

expected for larger magnetic activities of the giants which could perhaps be caused by the

deeper convection zones. There is no sign of increased magnetic activity at log Teff _' 3.75.

The decreasing CIV/CII ratio of emission line fluxes indicates decreasing magnetic activity

parallel with the decrease in v sin i. Transition layer emission line fluxes also decrease as

soen in Figure la. Increased coronal activity would be expected to show up in the X-ray

emission, which does, however, also decrease at these evolutionary phases. There is therefore

no observed indication for increased magnetic activity at this phase of giant evolution and

therefore no observational basis for the hypothesis of fast magnetic braking at this phase.

We conclude that the rearrangement of angular momentum in a rapidly deepening

convection zone rotating with nearly depth independent specific angular momentum is the

most likely explanation for the rapidly decreasing rotational velocities in giants.

\Ve want to emphasize that we do not claim that the decreasing v sin i for later spectral

types along the main sequence are due to a similar reason. Main sequence stars with

chromospheres and coronae stay on the main sequence long enough that magnetic braking

can reduce their angular momentum. The depth of the convection zone does not change for

oach star during its main sequence lifetime. For giants the situation is very different.

3.3. X-ray emission

The X-ray emission does not appear to be very closely correlated with v sin i. While for

some of the stars with log T_ff < 3.71 the X-ray emission decreases as expected it does not

do so for manv other stars. According to Maggio et al. 1,5 out of 17 detected X-ray sources

are multiple systems. In addition to the points shown in Figure 3c there are several upper

limits determined for KO III stars which are below the value measured for/3 Gem. It seems
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therefore possible that the measured X-ray fluxes refer all to binaries and are higher than the

X-ray fluxes for single stars in the temperature range for the low v sin i. Why the multiple

cool star systems should show a much higher X-ray flux than single stars with the same v

sin i is not obvious to us, especially since their C II and C IV line fluxes do not seem to be

much higher. It also remains a puzzle why there should be such a rather tight sequence of

stars with many RS CVn stars on it emitting just about a factor of 10 more X-rays than

the other stars. They appear to escape the phase of steep X-ray decline and instead seem

to follow their own sequence of slowly declining X-ray emission as seen in Figure 3c. Are we

permitted to speculate that perhaps their X-rays do not originate in their coronae proper?

4. Summary

The sharp decrease in v sin i for giants with B-V < 0.8, is most likely attributable to the

rather sudden increase in depth of the hydrogen convection zone at the evolutionary phase

when the giants start to ascend the red giant branch. Low angular momentum material has

been brought to the surface also having a higher N/C abundance ratio.

We see no indication of increased magnetic activity which could lead to fast magnetic

braking for giants with B-V ,-_ 0.8.

For log Tdf < :3.67 it seems possible that the v sin i recover slightly for some stars. It

is not clear at present whether this might be true for binaries only. In single stars it could

possibly be due to a partial return to rigid rotation because of turbulent friction.

Due to lower v sin i tile MIlD wave heating of the transition layers decreases, leading to

smaller emission line fluxes and to changes in the temperature stratification in these layers

which are then mainly heated presumably by acoustic flux. Tile change in temperature

stratification in the transition layers causes a reduction in the C IV/C II line flux ratios.

The decrease in v sin i leads to a steep decrease in X-ray emission for some stars but not

so much for others. Binary nature may prevent a steep decrease in X-ray fluxes.
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RS CVn stars do not show a steep decline in X-ray emission at the mixing phases. From

the available data we do not know whether their transition layer emission decreases steeply

at these phases.

Some other points may be of interest:

If the decrease of surface rotation velocity is due to rearrangement of angular momentum

in the convection zone then we must find a large gradient of rotational velocity at the

bottom of the convection zone which will probably lead to other instabilities and may extend

turbulent mixing to layers below the convection zone proper. This may perhaps explain the

unexpectedly large N/C abundance ratios observed for some stars.

If the decrease in surface rotation velocity is not due to braking then the total angular

momentum is conserved, yet the magnetic activity decreases. This then shows that the

observed magnetic activity is due to magnetic fields generated in the high layers of the

convection zone.

Since the X-ray fluxes, presumably concentrated in coronal loops, also decrease with

decreasing surface rotation but constant overall angular momentum we must conclude that

even the large scale magnetic fields seen in the loops are generated in the high layers of the

convection zone. If the slight delay in the decrease of the magnetic fields as compared to the

decrease in surface rotational velocity, suggested in Figure 3 especially by DK U Ma, is real

(this clearly needs more observations to confirm), then this indicates that these large scale

fields take a time on the order of l0 s years to decay.
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Figure Captions

Figure la. The dependence of the C IV (1550 _) emission line surface fluxes on the effective

temperature is shown for giants. Dots indicate known spectroscopic binaries, v indicate

variable radial velocities and question marks possible variable radial velocities for the

stars. RS indicates RS CVn stars, p stars with peculiar CN and/or CH molecular band

strengths. Brackets signal uncertain measurements, and arrows show that the values

given are upper limits.

Figure lb. The measured rotational velocities v sin i are shown as a function of Teff or B-V.

Tcff scale is tile same as in Figures la and lc. Notation as in Figure la. Notice that

the peculiar CN and CII molecular band strength are observed only after the stars have

decreased their v sin i.

Tile dashed line indicates the expected decrease in v sin i due to expansion if each mass

element were to conserve its angular momentum (see text).

The values calculated by Gray and Endal (1982) for v0 sin i = 140 kms -1 and for depth

independent specific angular momentum in the convection zones are given as squares.

F(CIV) is shown
Figure lc. The logarithm of the C IV to C II line flux ratio R cIv = log F(ClI)

as a function of log Teff. Notation is the same as in Figure la. The ratio decreases for

slowly rotating stars, probably showing a smaller contribution of MHD wave heating. 7

Tau was omitted from the plot because of the large variations in RcIv.

Figure 2. Different spectra of 7 Tau are shown displaying the large variations in the

appearance of the C IV line at 1550 )_. Other spectral changes appear to be present

also. The different spectra are displaced upward by 0.6 E-14 each.

Figure 3a. The theoretical evolutionary track of a 2.2 M_ star is shown in the Teff , luminosity

diagram (right hand scale). Also plotted is the age t as a function of Tcff (left hand outer

scale) and the depth of the convection zone, measured by the mass MCE [M_] (left hand

inner scale) below the lower boundary of the convection zone. The point E gives the
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evolutionary phase with the largest depth (in mass) of the convection zone. Data are

from Sweigart, Greggio and Renzini (1989).

Figure 3b. The observed changes in abundance ratios of nitrogen to carbon N/C, as compared

to main sequence abundances, are plotted as a function of Teff. The point for the _ Scuti

star _ Cas at log Teff "_ 3.86 lies at Alog N/C = -0.24.

Figure 3c. Plotted as a function of Teff are the X-ray surface fluxes as calculated from the

data given by Maggio et al. (1990). Notation as explained in the figure. The symbols _,

7 and 0 refer to the Hyades giants.
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